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Abstract 

The group-theoretical method established for obtain- 
ing the non-vanishing independent number of con- 
stants required to describe a magnetic/physical 
property in respect of the 18 polychromatic crystal 
classes [Rama Mohana Rao (1987). J. Phys. A, 20, 
47-57] has been explored to enumerate the second- 
order piezomagnetic coefficients (n~) for the same 
classes. The advantage of Jahn's method [Jahn (1949). 
Acta Cryst. 2, 30-33] is appreciated in obtaining these 
n~ through the reduction of a representation. The 
different group-theoretical methods are illustrated 
with the help of the point group 4. The results 
obtained for all 18 classes are tabulated and briefly 
discussed. 

1. Introduction 

The non-vanishing independent first-order piezomag- 
netic constants (ni) for the 90 magnetic classes 
[32 conventional point groups (Gk) and 58 double 
colour point groups (G~,)] were studied in detail 
by Bhagavantam (1966) and Bhagavantam & 
Suryanarayana (1949) using the character method 
(Bhagavantam, 1942) based on the computation of 
characters for deriving the number of independent 
constants for the description of various mag- 
netic/physical properties. Jahn (1949), employing a 
general method also based on group theory, provided 
an alternative procedure for deriving these constants 
using the reduction of a representation corresponding 
to the physical property considered. The representa- 
tion in each case was obtained in terms of the rep- 
resentation Va or Vp of an axial or polar vector, 
depending on the nature of the physical property 
under question. Subsequently, Krishnamurty & 
Gopala Krishna Murty (1969) extended Jahn's 
method to find the second-order piezomagnetic 
coefficients for the 90 magnetic classes. 

The non-vanishing first-order piezomagnetic con- 
stants (n~) for the applicationally important polychro- 
matic crystal classes G~k p), p = 3, 4 or 6 (Indenbom, 
Belov & Neronova, 1960; Rama Mohana Rao, 1985), 
have already been derived in an earlier paper by the 
present author (Rama Mohana Rao, 1987). With the 
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Table 1. Second-order piezomagnetic coefficients 
needed by the 18 polychromatic crystal classes 

Second-orde r  
p iezomagne t i c  

Po lychromat ic  coefficients 
class needed  

1 6 (6) 12 
2 5 (6) 0 
3 3(3)/m ' 12 
4 6 (3) 9 
5 3 (3) 21 
6 3(3)/m 9 
7 6(6)/m 0 
8 6(3)/m 9 
9 6(6)/m ' 12 

10 6(3)/m' 0 
11 3 (3) 21 
12 4 (4) 17 
13 ~(4) 17 
14 4(4)/m 0 
15 4(4)/m ' 17 
16 3(3)/2 4 
17 ()(3)/2 4 
18 ()(6)/2 0 

group-theoretical method (Rama Mohana Rao, 
1987), the second-order piezomagnetic coefficients 
(n'i) are enumerated for these classes in this paper by 
computing the character for the 10 crystallographic 
point groups Gk that generate the 18 polychromatic 

¢ (P)  classe~. Gk , p = 3, 4 or 6. To appreciate the advantage 
of Jahn's method, the non-vanishing second-order 
piezomagnetic coefficients are rederived in § 3 by the 
method of reduction of a representation and the 
results obtained through the former (character) 
method are compared. The different group-theoretical 
procedures are illustrated here, with the help of the 
point group 4 that induces the polychromatic class 
4 (4). The results obtained for the rest of the 17 classes 
are tabulated in Table 1 and a brief discussion of the 
results is provided in § 4. The nomenclature adopted 
in this paper for the point groups is that of Hermann- 
Mauguin (International) and the notation for the 
polychromatic classes is that of Indenbom, Belov & 
Neronova (1960). 

2. Second-order piezomagneti~ coefficients of the 
polychromatic classes 

Piezomagnetism is the appearance of a magnetic 
moment M (Mi, i = 1, 2, 3) on the application of stress 
o-. The occurrence of this phenomenon has already 
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been verified and measured by Borovik-Romanov 
(1959) in the fluorides of cobalt and manganese in 
the anti-ferromagnetic state. The first-order 
piezomagnetic constants CUk are studied from the 
relation 

M,=E~. CukCrjk ( i , j ,k=l ,2 ,3) ,  (2.1) 
j k 

where M, the magnetic moment, is an axial vector 
and or is a second-range symmetric polar tensor. The 
character x<r)(R~) corresponding to a symmetry 
operation R~, as given by Bhagavantam (1966), is 

x(r)(R~) =(4COS 2 ~p+2cos q~)(l+2cos q~) (2.2) 

with the usual convention for + or - signs, according 
as the symmetry operation is a pure rotation or a 
rotation-reflection. 

The orientation of the magnetic moments of those 
magnetic structures that correspond to the piezomag- 
netic crystal classes have already been described by 
Koptsik (1966). It was actually shown that only 66 
out of the 90 magnetic classes were piezomagnetic.* 
However, in respect of second-order piezomagnetism, 
Krishnamurty & Gopala Krishna Murty (1969) 
observed that 69 out of the 90 magnetic classes exhibit 
this phenomenon. 

The non-vanishing independent first-order piezo- 
magnetic coefficients in respect of the 18 poly- 
chromatic crystal classes have been obtained by Rama 
Mohana Rao (1987) and 13 of these classes were 
shown to be piezomagnetic. The second-order 
piezomagnetic coefficients for these 18 classes are 
enumerated in this section for the first time, using the 
character method, by considering the irreducible rep- 
resentation (IR) of the appropriate factor group 
Gk/H with the 10 crystallographic point groups (Gk) 
containing one-dimensional (1D) complex IRs. 

It can be seen that second-order piezomagnetism 
represents a relation between the axial vector and a 
quadratic combination of stresses (symmetrized 
stress). The constants for the second-order piezomag- 
netic effect can be studied from the governing relation 

[~i -~ ~ ~, ~,, ~ CijklmO'jkOrlm, (2.3) 
j k l m  

with the indices taking the values as per the usual 
convention. Since the character of the axial vector is 
given by (1 +2 cos ~) and that of the character of 
symmetrized stress can be given by (16 cos 4 ~ ±  
8 cos 3 q~ - 4 cos 2 q~ + 1), the compound character for 
second-order piezomagnetism, expressed as the prod- 
uct of the characters of the quantities involved, is 

* The number of piezomagnetic coefficients for the 32 crystallo- 
graphic point groups (Gk) and the 58 piezomagnetic groups (G~) 
are provided in the classic work by Koptsik (1966). They are also 
dealt with in the book by Sirotin & Shaskolskaya (1982). However, 
for the 18 groups G~k p), p = 3, 4 or 6, the numbers of c's given in 
this paper are reported for the first time. 

given by 

x(r)(R~) = (1 +2 cos q~)(16 cos 4 q~ 

+ 8 cos 3 ~o - 4 cos 2 q~ + 1) (2.4) 

with the understanding as before about the alternative 
signs when they occur. 

The enumeration of the desired coefficients is made 
in this section by utilizing (a) the 1D complex IR of 
the appropriate factor group G/H, (b) the defini- 
tion of the character of a coset (Krishnamurty, 
Appalanarasimham & Rama Mohana Rao, 1977), (c) 
the expression for -<r) in respect of second-order xp 
piezomagnetism as provided by (2.4) and (d) the 
known formula (Bhagavantam & Venkatarayudu, 
1951) 

n~=(1/g) ~, h v (r)~(r,) (2.5) 
p/ t  p A p 

P 

with the usual notation. The actual procedure is now 
illustrated with the help of the point group 4 that 
induces the class 4 ~4). 

It can be seen that the point group 4 contains one 
pair of 1D complex IRs IE and :E and either of these 
two IRs induces the polychromatic class 4 ~4) (Inden- 
bom, Belov & Neronova, 1960; Rama Mohana Rao, 
1985). The character table of the appropriate factor 
group 4/1 ~ 4 is given by 

4/1 

AI 
B1 
1 E 
2 E 

E C4+~ C2z C;z 

1 1 1 1 
1 - 1  1 - 1  
1 - i  - 1  i 
1 i - 1  - i  

63 1 - 5  1 

n; 

17 

Following theorem 3 of Rama Mohana Rao (1987), 
it can be inferred that the polychromatic class 4 (4) 
requires 17 second-order piezomagnetic coefficients. 
This method, when extended to the rest of the nine 
point groups containing 1D complex IRs, yields the 
desired coefficients n~ for the remaining 17 polychro- 
matic variants. The results obtained through this 
group-theoretical procedure are provided in Table 1. 

3. Jahn's  method 

To appreciate the advantage of Jahn's method, the 
coefficients n~ are recalculated in this section through 
the idea of reduction of a representation. The pro- 
cedure is illustrated her., with the help of the same 
point group, 4. 

If [V 2] represents the symmetrical product (Tisza, 
1933) of Va (the representation of an axial vector) 
with itself, the form of the representation correspond- 
ing to piezomagnetism has already been computed 
(Krishnamurty & Gopala Krishna Murty 1969) and 
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is given by 

Va[V~] = 2D~ g + D2 g + D~, (3.1) 

where D g stands for the representation of dimension 
(21+ 1) of the group R~ which is even with respect 
to inversion. Now the corresponding form of the 
representation for the second-order piezomagnetism 
can be obtained either from (2.3) or from (2.1) by 
including the symmetrized square (quadratic combi- 
nation) of the polar second-rank stress tensor cr. The 
appropriate axial tensor is then of rank 5 and will 
necessarily be magnetic. Then the representation per- 
taining to the second-order piezomagnetic effect can 
be given by Va[[V2p] 2] and, when reduced, its value 
is given by 

Va[[V2] 2] = 4 D  g + 2D g + 3D3 g + D4 g + D g. (3.2) 

The values of the various D~_ obtained for the point 
group 4 can be seen to be 

Dg=Aa+E 

D g=AI+2BI+E 

Dg= A~ + 2BI + 2E (3.3) 

D g = 3A1 + 2B~ + 2E 

D~ = 3A~ + 2B~ + 3 E. 

The above reductions of D g provided by (3.3) when 
substituted in the RHS of (3.2) yield 

V,,[[V~]2]=15A~+lnBI+17E, (3.4) 

which is the reduced form of the representation for 
the point group 4 for second-order piezomagnetism. 
Since any one of the 1D complex IRs E of the point 
group 4 induces the variant 4 (4), the numerical 
coefficient 17 of E in the reduced form (3.4) gives 
the number of second-order piezomagnetic 
coefficients needed by 4 (4) . 

Results obtained through Jahn's method for the 
polychromatic class 4 (4) illustrated here, as well as 
for the rest of the 17 polychromatic classes, are in 
complete agreement with those obtained through the 
alternative (character) method described in § 2. 

4. Discussion 

It is interesting to note that in respect of piezomagnet- 
ism, the 18 polychromatic crystal classes divide them- 
selves into two categories: (a) those classes which do 
not need any piezomagnetic coefficients (there are 
5 such classes: 6(6)/2, ~(6), 6(6)/m, 6(3)/m, and 4(4)/m) 
and (b) those groups which need piezomagnetic 
coefficients but with varying number for the first and 
second orders under consideration (a total of 13 
classes). The five polychromatic classes given in 
category (a) and which are induced by the 1D com- 
plex IRs of the crystallographic point groups - m3, 3, 
6/m, 6/m and 4/m respectively - did not require 

any piezomagnetic coefficients (either of first order 
or of second order), since piezomagnetism is a cen- 
trosymmetric property and the centre of inversion (i) 
in the inducing 1D complex IR of the generating 
point groups has the character -1.  

The 13 polychromatic classes under category (b) 
which exhibit piezomagnetism and belong to 
hexagonal, trigonal, tetragonal and cubic syngonies 
divide themselves into three types. It can be observed 
that the six classes with hexagonal symmetry split 
themselves into two sets requiring different numbers 
of coefficients. Whereas the three groups 6(6); 3(3)/m'; 
6(6)/m' require 12 second-order piezomagnetic 
coefficients, the others 6(3); 3(3)/m; 6(3)/m require 
nine such coefficients. The two polychromatic classes 
with trigonal symmetry [3 (3) and 3 (3)] need 21 second- 
order piezomagnetic coefficients. The three classes 
belonging to the tetragonal class of symmetry [4(4); 
~(4); 4(4)/m,] need 17 second-order piezomagnetic 
coefficients and the two classes with cubic symmetry 
[3(3)/2; 6(3)/2] require four such coefficients. 

It has already been shown (Koptsik, 1966) that, in 
the absence of magnetic and mechanical stresses, 
there exist 353 magnetic structures when the first- 
order piezomagnetic effects are alone considered. 
The appearance of non-vanishing second-order 
piezomagnetic coefficients in respect of the point 
groups 43m, 432 and m3m (Krishnamurty & Gopala 
Krishna Murty, 1969) of the cubic system (for which 
the first-order piezomagnetic coefficients do not sur- 
vive); and the appearance of non-vanishing first- and 
second-order piezomagnetic coefficients in respect of 
the 13 polychromatic crystal classes [an outcome of 
the study already made by this author (Rama Mohana 
Rao, 1987) and through study during the present 
work] may give rise to an increased number of mag- 
netic structures. The theoretical studies made by this 
author show positive evidence for such an extension 
of the magnetic structures. 

It can be observed that Jahn's method of reduction 
of a representation employed for the enumeration of 
magnetic coefficients here is in conformity with the 
physical significance of the derived constants (ni), 
established earlier by this author (Rama Mohana 
Rao, 1987) while studying the magnetic properties of 
polychromatic crystals, and it fits closely with the 
construction of polychromatic groups (Indenbom, 
Belov & Neronova, 1960; Rama Mohana Rao, 1985). 
The results obtained here through Jahn's method are 
in complete agreement with those of the n l obtained 
via the character method. 
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Abstract 

Homometric structures are non-congruent structures 
having identical X-ray intensity distributions. It has 
so far been assumed that such structures, while 
theoretically interesting, would not be realized in 
practice. Homometrism in close-packed structures is 
shown to be a realistic possibility. Some general rules 
applicable to homometric pairs are presented; it is 
shown that an infinite number of them can be derived 
from one-dimensional homometric pairs. An exhaus- 
tive search of close-packed structures with periods of 
up to 26 reveals that the smallest period of a 
homometric pair is 15 and that their number increases 
rapidly with the period. Homometrism in polytypic 
structures is further discussed. 

Introduction 

The term 'homometric pair'  was introduced by Patter- 
son (1939, 1944) to denote two non-congruent struc- 
tures having the same set of distances r i - r j  (i , j  = 
1 , . . . ,  N),  where N is the number of atoms in the 
unit cell and ri is the coordinate vector of the ith 
atom. As X-ray intensities depend on the distance 
ri - r j  and not on the individual r{s, the two members 
of a homometric pair will have the same set of 
intensities even though they are not congruent struc- 
tures. Two structures are considered to be congruent 
if they can be brought into coincidence by a combina- 
tion of translation, rotation and reflection operations. 
Patterson (1944) discusses in some detail the charac- 
teristics of homometric structures consisting of one 
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type of atom in one, two and three dimensions and 
gives a large number of examples of such structures. 
Patterson's work made it clear that the information 
included in X-ray intensity sets is not sufficient in all 
cases to determine a structure uniquely. As a con- 
sequence, X-ray structure determination must be fol- 
lowed by an examination of possible homometric 
structures and, if found, other methods must be util- 
ized for a unique structure determination. 

In the years following Patterson's publication, the 
importance of the possible ambiguities associated 
with X-ray structure determination was played down. 
Lipson & Cochran (1966) quote Robertson's con- 
clusion that the chance of finding homometric pairs 
is small and, even if discovered, it would be unlikely 
that both would present structures that are chemically 
possible. Stout & Jensen (1968) referring to homo- 
metric sets state: 'Although of theoretical interest, 
these are exceedingly unlikely to appear in practice 
and do not pose a real difficulty'. 

In their discussion of homometric pairs in close- 
packed structures, Jain & Trigunayat (1977) point out 
that, in structures based on the closest packing of 
spheres where each sphere is replaced by more than 
one atom, two identical stacking sequences may under 
certain conditions constitute a homometric pair. This 
type of homometrism cannot exist in close-packed 
structures of only one kind of atom. 

In the above case of homometrism, the two mem- 
bers of the pair are simply related to one another and 
both have the same stacking sequence of layers, 
a property important for many investigations in 
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